Internship Project 
by

Pavlo Levkiv

11th grade, Newark Academy, Livingston, NJ

Advisor

Dr. Ruslan Belikov
Princeton TPF group

Mechanical and Aerospace Engineering

Princeton University.

Project topic

Study the effects of errors in the shaped pupil coronagraph mask on the produced  image.
 December 2005

Introduction

TPF (terrestrial planet finder) is a project with the objective of finding earth-like planets around other stars. Such planets cannot be detected using simple telescopes, because for the planet to be earthlike, it has to orbit the star close enough for enough light energy to reach the planet to sustain life. Planets at such a close radius cannot be seen through a telescope because once the starlight gets to the telescope lens, it diffracts, and this diffracted light is much brighter than the light reaching the telescope from the planet. To see the planet, a coronagraph can be designed, which creates a dark region very close to the star image, in which the weak light from the planet can be detected. 

The contrast of 
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 must be achieved in this dark region (contrast at any point on the image is the intensity of light at that point divided by the maximum intensity on the image), because this is how much dimmer the planet is than the star. A way of achieving this contrast is by designing telescope masks to diffract the light in such a way as to cancel it out at certain regions of the image. These dark regions have to be where we expect to find the earthlike planets.

There are two major methods to shade the star from the planet: apodization and shaped pupil coronagraphs. The apodization method is to attenuate the star using the mask whose transparency may take continuous values from 0 to 1. This type of mask can yield excellent contrast in large region but is very difficult to manufacture and produces low total throughput. In the shaped pupil method, which is considered here, the masks take on transmission values of only 0 or 1, and the required contrast and form of the dark region is achieved by designing the form of the mask. The optimal mask design has been found by Jeremy Kasdin, Robert Vanderbrei, David Spergel, and Michael Littman [1].

Objective of study

The objective of the investigation is to find the effect of errors in manufacturing of the mask on its performance. This would allow making decisions on how precise the mask should be manufactured. 

Approach
To achieve the objective, the following approach was proposed by advisor: 
1. Simulate errors on the mask. 
2. Take the Fourier Transform to obtain the image of the aperture.
3. Analyze the results.

Plan of investigation
This approach was detailed further in the following plan of investigation:

1. Learn the about TPF and theory of shaped pupil coronagraphy.

2. Learn the basics of Matlab, as the primary tool for simulation.

3. Learn how to synthesize an image of the mask using provided by advisor file A_360 that describes the configuration of the optimal mask.

4. Learn how to take the Fourier transform of the mask to get the point spread function (PSF). Two possible ways can be used here: using FFT function from Matlab or creating own routine to calculate the Fourier transform.

5. Create some errors in the mask by taking the values in A_360 and adding some random noise to it. 

6. Take the Fourier transform of the mask with errors and investigate the effect of errors on the resulting PSF.

7. Study how the things change with the wave length (repeat investigation 6 for different wave length.) 

8. Simulate the effect of errors for the white light by combining the results  of 7 for the wave lengths comprising the white light.

Items 7 and 8 were proposed as the extra points if time allows.

Procedure
1. Learn  about TPF and theory of shaped pupil coronagraphy.

The TPF theory is described briefly in introduction. Information was taken from:

 http://planetquest.jpl.nasa.gov/TPF/tpf_index.html  and 

http://www.orfe.princeton.edu/~rvdb/tex/tpf/ApJOptimal.pdf
2. Learn the basics of Matlab, as the primary tool for simulation.

Matlab is a software which allows computation of various mathematical operations. Originally designed for work with matrices, it has grown into a programming tool capable of numerically computing functions, derivatives, integrals, transforms, and much more. It is extremely useful for various mathematical simulations. It was the first time I used it and I was fascinated with its capabilities. Earlier I was using Excell for all my projects and I found that Matlab is incredibly more powerful, although I did not learn yet all its capabilities.
3. Learn how to synthesize an image of the mask using provided by advisor file A_360 that describes the configuration of the optimal mask.

The shape of the mask is defined by a set of functions which determine the outlines of the regions of 1’s and 0’s on the mask. A program provided by the advisor makes a matrix of 1’s and zeros representing the mask(1’s representing 100% transmission of light and 0’s representing 0% transmission of light)  The file with the data representing the functions defining the mask represents only one quadrant of the mask, so the program also reflects it onto the other four quadrants to make the full mask. The errors of manufacturing will be simulated by the addition of random, normally distributed values to the functions defining the regions. There will be two investigations: the effect of noise with mean=0 and various standard deviations, and the effect of noise with nonzero mean on the mask with certain fixed standard deviation. 
These are the functions defining one quadrant of the mask.
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Fig 1.
4. Learn how to take the Fourier transform of the mask to get the point spread function (PSF). Two possible ways can be used here: using FFT function from Matlab or creating own routine to calculate the Fourier transform.

The image resulting from light going through the mask, the point spread function (PSF) can be found by the following formula for electric field response:
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This is essentially a Fourier Transform (FT), with some scaling factors. There is a Matlab routine, the FFT, which memory-efficiently calculates this transform based on the Cooley-Tukey algorithm. Initially, I tried to write my own FT code, but it took up too much memory, and to calculate the FT of a matrix of 40 elements took more than three hours. So I decided to try to use the FFT routine, which worked much faster and required much less memory. However, it took me a long time to understand how the FFT program works, because it’s actually performs not FT, but DFT- Discrete FT. What I particularly found strange about the FFT program was that its parameters included only the matrix of which to take the FT, and not the domain of the output. I went on to use it for the rest of the project, but stumbled on this same problem when I tried to investigate the effect of different wavelengths of light on the performance of the mask. Because the only input for the FFT program is the matrix, there is no way to control the width of the “view” of the PSF, and this is needed for the wavelength investigation. (see procedure item #7) 
With the FFT code, it takes about 20 minutes to calculate the PSF of a 2048x2048 pixel mask, about 4 to 5 hours to calculate the sumA criteria for 10-12 values of 
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 or 
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, and about 48 hours to do 10 trials of calculating sumA criteria for 10-12 values of 
[image: image6.wmf]m

 or 
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 and averaging the results from the trials (this is done because random values are involved).

5. Create some errors in the mask by taking the values in A_360 and adding some random noise to it. 

The mask without errors as produced by Makemaskellipse12b.m. is shown below.
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fig 2

 To create the mask with random errors (see procedure item #3), I added a feature to the program Makemaskellipse12b.m which adds random numbers of specified mean and standard deviation to the functions defining the mask before making the mask matrix. This new program is called Makemaskellipse12bWE.m (WE means with errors). The original program makes the mask matrix (represented in fig 2) from the file A360. The file A360 contains pairs of values, each pair serving as a coordinate for a point on fig 1. Makemaskellipse12bWE.m adds random variables to the y coordinates of the A360 file. Thus it only manipulates the distance of the mask edges from the horizontal (according to fig 2) middle line of the mask.
6. Take the Fourier transform of the mask with errors and investigate the effect of errors on the resulting PSF.

The typical PSF of the mask without errors looks like this:
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Fig 3.
The performance of a mask will be measured by the area of the dark region it produces. The PSF will be ignored beyond certain discovery region, where we expect to find earth like planets), which is being defined as the number of pixels from the center of the PSF cross section to where the second maximum of the PSF cross section occurs (r pixels from the image center):
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Fig 4.
The value of r was found by an algorithm which finds the maximum value in the PSF midsection after ignoring the central maximum.
The percent of the area on this piece of the PSF where the contrast of 10^-10 occurs, I suggest to be the criterion for the masks with varying degrees of error. A matrix “A” will be associated with this (short) PSF, being the same size as the PSF and having values of 1 at points corresponding to points on the PSF with contrast equal to or less than 10^-10, and zeros elsewhere. The sum of the elements on this matrix consisting of zeros and ones, divided by its size will be equal to the percent of the PSF area having the needed contrast. This value will be the criteria for the masks with various degrees of error. This criterion will be plotted against the standard deviation of the noise added to the mask.
7,8. Study how the things change with the wave length (repeat investigation 6 for different wave length.) 


Simulate the effect of errors for the white light by combining the results  of 7 for the wave lengths comprising the white light.

From the formula 
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, where 
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, changing the wavelength would be the same as scaling the FT to cover a larger or smaller part of the image. But this was somewhat problematic. With the FFT tool, it is not clear what is the size or the units of measure of the FT output. When the FFT tool is used, there in no way to specify for it the dimensions of the output. In fact, the more pixels there are in the mask (input), the larger the view of the output (image). If we control the wavelength this way, there would be a discrepancy between PSFs of different wavelengths. PSFs of smaller wavelengths, for which the k value would be larger, and thus would need a larger FT view to cover the same dimensions, would be of higher pixilation and thus higher accuracy. Larger wavelengths would result in less accurate PSF by the same reasoning. I think it is somewhat incorrect to compare and add PSFs of different accuracies. Thus, this might require me to make an FT code of my own, or to do some interpolation, which I plan to work on in the near future.
Results

Variance noise investigation. Noise with a mean of 0 was applied to the mask shape by two methods. The first method was adding random values of the same standard deviation to the functions defining the mask.

Below are the images of the PSF, matrix A, and the PSF cross section for different variances (s, on the diagrams) of noise. One trial consisted of 20 different values of 
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, the images  are plotted for every 4th value of variance in the series). It takes about 2 hours to calculate one series on a Pentium 4 3GHz computer with 512 MB memory. These images look virtually indistinguishable from all subsequent such images for other investigations with the similar sumA values. So I only include these in my report. The rest are in the attached CD.
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Fig 1
Since the added error is random, each trial represents a random result. To obtain a meaningful dependence, I performed averaging of twenty trials for every value of 
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.  The results of simulation are summarized in the two plots below (the computation of each one of them takes about two days of continues calculations on the same PC).  The first is showing the criteria SumA versus standard deviation.  
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Fig. 2
A closer view  (a range of 0 to 2*10^-5 as opposed to 0 to 2*10^-4 in fig 2): 
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Fig.3.
The sumA criteria shows that at a standard deviation of 0 (no noise added to the boundaries defining the mask), about 20% of the area of the PSF had the required contrast of 10^-10, while at a standard deviation of 2*10^-5, it was only 10%.

The other way of adding noise with a mean of 0 to the mask was to add random values proportional to the value of the function defining the boundaries of the mask, i.e. proportional to the distance from the middle of the mask. Here is the same sumA criteria for this case (here the values of the x-axis are the actual values, the percent values would be 100 times more) :
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Fig. 4
A closer view: (a range of 0 to 3*10^-4 as opposed to 0 to 10^-3 in fig 4)
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Fig. 5
So, in the first case of addition of noise with mean=0, random variables were added to every point on the mask defining functions with the same standard deviation. With the second method the standard deviation of the value added to the mask defining function depended on the value of the function
Mean of the noise investigation. The correlation between sumA and the mean of the noise added to the mask was further investigated. The values on the x-axis of the following graph are the actual values of the mean. To investigate this correlation, I added random values of different means to the mask defining functions. The standard deviation for each mean was 5*10^-7, which is a relatively low standard deviation according to fig 3. The graph below shows the sumA criterion  as function of 
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. (There is a mistake in the title of the graph, it should say: SumA vs. Mu, instead of black area vs mu, but I did not change this because it takes more than two days to recalculate this result)
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Fig. 6.
Closer view: (range of -5*10^-4 to 5*10^-4 as opposed to -5*10^-2 to 5*10^-2 in fig 6) (again, there is a mistake in the title of the graph, it should say: SumA vs. Mu, instead of sumA vs. sigma, but I did not change this by the same reason)
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Fig. 7.
Conclusions
The maximum allowable error in the manufacturing of the mask should be determined by the desired performance of the mask. The effect of the variance was relatively high on the mask’s performance. Small disturbances in the form can significantly reduce the area of the detestability region and even obliterate it. These results were relatively obvious to expect.
The effect of a nonzero mean (which would represent a systematic error of manufacturing, such as a wrong width of the manufacturing device) was more unexpected. The relationship is approximately symmetric about 
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=0 in the short range (-5*10^-4<
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<5*10^-4) (see fig 6), but in the largr range of 
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 (-5*10^-2<
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<5*10^-2)  a positive  
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had a much smaller effect on the mask’s performance than a negative 
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. This means that a manufacturing error of adding onto the mask edges and increasing the distance of all the edges from the middle of the mask has a much lesser impact on the mask’s performance that subtracting from the edges and decreasing their distance from the mask’s middle line.
When random numbers with a positive 
[image: image29.wmf]m

 are added to the functions in fig 1 of procedure, all of the lines defining the mask move up on average. This means that the central block of the mask becomes wider (from its horizontal (according to fig 2 in procedure)) and all the other “blocks” of the mask move away from the center horizontal line of the mask. According to fig 6 in results, such a manufacturing error is less detrimental to the mask’s performance than a negative 
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, which would make the central “block” of the mask less wide towards the middle of the mask and would make the other “blocks” of the mask move towards the middle of the mask. This is more detrimental to the mask’s performance than a positive 
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 according to fig 6 in results.
Unanswered questions
The first observation which I found unusual was that in the matrix A with standard deviation and mean of the noise both equal to 0 (ie the original mask) there were areas of contrast less than the needed 10^10 in dark region. (the white spots in the dark region of the leftmost sumA image in fig 0).
Also, as was pointed out earlier, in the wide view of sumA vs Mu (fig 5) the graph was non-symmetrical and there was a second “peak” at about 
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=0.045. This signifies that an error of subtracting from the mask edges is much more detrimental to the PSF than adding to the mask edges and it is not quite clear for me why it happens. 

Attachments
For this investigation I wrote four programs in Matlab. The core of those programs (calculation of the PSF matrix) is basically the same. They differ in the type of tests that I perform with PSF and the type of random perturbations in the mask. One of the programs is listed below.

All Matlab programs as well as all results represented as Matlab figure files are attached on a CD.

The Matlab program.

%Mask with errors. Variance investigation. No averaging.

n=1024; % number of mask points in one quadrant

%nLambda = 4; %loop range for lambda

sdprc1 = 0.000

sdprc2 = 0.00025

nsdprc = 20

dsdprc = (sdprc2-sdprc1)/nsdprc

Sdprc = (sdprc1:dsdprc:(sdprc2-dsdprc))

r = 1 % focal length

figure

% random noice loop

for k = 1:nsdprc;

Mask = MakeMaskEllipse12bWE(n,Sdprc(k),0);

%Mask = MakeMaskEllipse12bWE(n);

[mr,mc] = size(Mask);

%FFT of mask

E = (fft2(Mask))/(mr*mc);

Es = fftshift(E);

Esc = conj(Es);

PSFs = Es.*Esc;

% removing first row of PSF 

PSFs(1,:) = [];

PSFs(:,1) = [];

[mr,mc] = size(PSFs);

% taking the log:

for i = 1:mc

    for j = 1:mr

        PSFs(i,j) = log10(PSFs(i,j));

    end

end

% PSF midsection starting from the middle

for r = 1:ceil(mc/2)

    PSF_M(r) = PSFs(ceil(mr/2),r+floor(mc/2));

end

%Determing the potential discovery zone. We do it only for sigma=0 and then

%keep it for all other simas.

if k==1

    % Remove 5% of midsection in the beginning, where the highest value is. 

    for r = ceil(mc/40):ceil(mc/2)

        PSF_Ms(r-floor(mc/40)) = PSF_M(r);

    end

    %Find the point where max of remaining midsection is 

    m = max(max(PSF_Ms))

    C = zeros(1,ceil(mc/2)-ceil(mc/40));

    %The size of miningful part of PSF (from the center 

    for i = 1:ceil(mc/2)-ceil(mc/40)

        if PSF_Ms(i)==m

            C(i)=i;

        end

    end

    r2 = sum(sum(C))

    r2 = r2 + ceil(mc/40)

end    

%cutting off part of PSF beyond the max

for i = 1:(ceil(mc/2)-r2)

    PSFs(:,(mc-i+1)) = [];

    PSFs((mc-i+1),:) = [];

end

for i = 1:(ceil(mc/2)-r2)

    PSFs(:,1) = [];

    PSFs(1,:) = [];

end

%PSFshort = PSFs;

[mr,mc] = size(PSFs);

% finding the Contrast matrix:

psfs0 = PSFs(ceil(mr/2),ceil(mc/2));

Contrast = PSFs - psfs0;

% forming matrix A: marix with ones for Contrast<10^-10 and zeroes for >10^-10:

A = ones(mr,mc);

for i = 1:mr

     for j = 1:mc

       if (Contrast(i,j)) <= (0-10);

       A(i,j)=0;

       end

     end

end

SumA(k) = 1-((sum((sum(A))'))/(mr*mc));% the scaled area of nonzero A

% plotting matrices

% we print matrices for every 4-th sigma

if (((k-1)+4)/4)==(1+(floor((k-1)/4)))

%    subplot(4,(nSigma/4),((k+3)/4))

%    imagesc(PSFlog)

%    title( strcat('PSFlog, Sigma=', num2str(Sigma(k))))

%    axis image

%    colormap gray

    subplot(3,(nsdprc/4),((k+3)/4))

    imagesc(PSFs)

    title( strcat('PSFshort'))

    axis image

    colormap gray

    subplot(3,(nsdprc/4),(1*(nsdprc/4))+((k+3)/4))

    imagesc(A)

    title( strcat('A: s=',num2str(Sdprc(k))))

    axis image

    colormap gray

    subplot(3,(nsdprc/4),(2*(nsdprc/4))+((k+3)/4))

    plot(PSF_M)

    title( strcat('PSF midsection'))

end

end %end of varince loop (k)

SumA

%ContrastRatio

%LineContrastRatio

%plotting criteria

figure

    plot(Sdprc,SumA,'*')

    title('SumA vs SD percent')

r
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